Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
When biological populations expand into new territory, the evolutionary outcomes can be strongly influenced by genetic drift, the random fluctuations in allele frequencies. Meanwhile, spatial variability in the environment can also significantly influence the competition between subpopulations vying for space. Little is known about the interplay of these intrinsic and extrinsic sources of noise in population dynamics: When does environmental heterogeneity dominate over genetic drift or vice versa, and what distinguishes their population genetics signatures? Here, in the context of neutral evolution, we examine the interplay between a population’s intrinsic, demographic noise and an extrinsic, quenched random noise provided by a heterogeneous environment. Using a multispecies Eden model, we simulate a population expanding over a landscape with random variations in local growth rates and measure how this variability affects genealogical tree structure, and thus genetic diversity. We find that, for strong heterogeneity, the genetic makeup of the expansion front is to a great extent predetermined by the set of fastest paths through the environment. The landscape-dependent statistics of these optimal paths then supersede those of the population’s intrinsic noise as the main determinant of evolutionary dynamics. Remarkably, the statistics for coalescence of genealogical lineages, derived from those deterministic paths, strongly resemble the statistics emerging from demographic noise alone in uniform landscapes. This cautions interpretations of coalescence statistics and raises new challenges for inferring past population dynamics.more » « less
-
Ordered, collective motions commonly arise spontaneously in systems of many interacting, active units, ranging from cellular tissues and bacterial colonies to self-propelled colloids and animal flocks. Active phases are especially rich when the active units are sufficiently anisotropic to produce liquid crystalline order and thus active nematic phenomena, with important biophysical examples provided by cytoskeletal filaments including microtubules and actin. Gliding assay experiments have provided a test bed to study the collective motions of these cytoskeletal filaments and unlocked diverse collective active phases, including states with long-range orientational order. However, it is not well understood how such long-range order emerges from the interplay of passive and active aligning mechanisms. We use Brownian dynamics simulations to study the collective motions of semiflexible filaments that self-propel in quasi-two-dimensions, in order to gain insights into the aligning mechanisms at work in these gliding assay systems. We find that, without aligning torques in the microscopic model, long-range orientational order can only be achieved when the filaments are able to overlap. The symmetry (nematic or polar) of the long-range order that first emerges is shown to depend on the energy cost of filament overlap and on filament flexibility. However, our model also predicts that a long-range-ordered active nematic state is merely transient, whereas long-range polar order is the only active dynamical steady state in systems with finite filament rigidity.more » « less
-
Active nematics are an important new paradigm in soft condensed matter systems. They consist of rodlike components with an internal driving force pushing them out of equilibrium. The resulting fluid motion exhibits chaotic advection, in which a small patch of fluid is stretched exponentially in length. Using simulation, this paper shows that this system can exhibit stable periodic motion when confined to a sufficiently small square with periodic boundary conditions. Moreover, employing tools from braid theory, we show that this motion is maximally mixing, in that it optimizes the (dimensionless) “topological entropy”—the exponential stretching rate of a material line advected by the fluid. That is, this periodic motion of the defects, counterintuitively, produces more chaotic mixing than chaotic motion of the defects. We also explore the stability of the periodic state. Importantly, we show how to stabilize this orbit into a larger periodic tiling, a critical necessity for it to be seen in future experiments.more » « less
-
Using a combination of experiment and simulation, we study how two-dimensional (2D) crystals of colloidal nanoparticles grow on cylindrical substrates. The cylindrical geometry allows us to examine growth in the absence of Gaussian curvature but in the presence of a closure constraintthe requirement that a crystal loops back onto itself. In some cases, this constraint results in structures that have been observed previously in theory and nonequilibrium packing experiments: chiral crystals and crystals with linear defects known as “line slips”. More generally, though, the structures we see differ from those that have been observed: the line slips are kinked and contain partial vacancies. We show that these structures arise because the cylinder changes how the crystal grows. After a crystal wraps around the cylinder and touches itself, it must grow preferentially along the cylinder axis. As a result, crystals with a chiral line slip tend to trap partial vacancies. Indeed, we find that line slips that are less aligned with the cylinder axis incorporate more partial vacancies on average than the ones that are more aligned. These results show that crystal growth on a cylinder is frustrated by the closure requirement, a finding that may shed some light on the assembly of biological nanosystems such as tobacco mosaic virus and might inform ways to fabricate chiral optical nano materials.more » « less
-
In lyotropic chromonic liquid crystals (LCLCs), twist distortion of the nematic director costs much less energy than splay or bend distortion. This feature leads to novel mirror-symmetry breaking director configurations when the LCLCs are confined by interfaces or contain suspended particles. Spherical colloids in an aligned LCLC nematic phase, for example, induce chiral director perturbations (“twisted tails”). The asymmetry of rod-like particles in an aligned LCLC offer a richer set of possibilities due to their aspect ratio ( α ) and mean orientation angle (〈 θ 〉) between their long axis and the uniform far-field director. Here we report on the director configuration, equilibrium orientation, and angular diffusion of rod-like particles with planar anchoring suspended in an aligned LCLC. Video microscopy reveals, counterintuitively, that two-thirds of the rods have an angled equilibrium orientation (〈 θ 〉 ≠ 0) that decreases with increasing α , while only one-third of the rods are aligned (〈 θ 〉 = 0). Polarized optical video-microscopy and Landau–de Gennes numerical modeling demonstrate that the angled and aligned rods are accompanied by distinct chiral director configurations. Angled rods have a longitudinal mirror plane (LMP) parallel to their long axis and approximately parallel to the substrate walls. Aligned rods have a transverse and longitudinal mirror plane (TLMP), where the transverse mirror plane is perpendicular to the rod's long axis. Effectively, the small twist elastic constant of LCLCs promotes chiral director configurations that modify the natural tendency of rods to orient along the far-field director. Additional diffusion experiments confirm that rods are angularly confined with strength that depends on α .more » « less
-
Dynamic lane formation and long-range active nematic alignment are reported using a geometry in which kinesin motors are directly coupled to a lipid bilayer, allowing for in-plane motor diffusion during microtubule gliding. We use fluorescence microscopy to image protein distributions in and below the dense two-dimensional microtubule layer, revealing evidence of diffusion-enabled kinesin restructuring within the fluid membrane substrate as microtubules collectively glide above. We find that the lipid membrane acts to promote filament–filament alignment within the gliding layer, enhancing the formation of a globally aligned active nematic state. We also report the emergence of an intermediate, locally ordered state in which apolar dynamic lanes of nematically aligned microtubules migrate across the substrate. To understand this emergent behavior, we implement a continuum model obtained from coarse graining a collection of self-propelled rods, with propulsion set by the local motor kinetics. Tuning the microtubule and kinesin concentrations as well as active propulsion in these simulations reveals that increasing motor activity promotes dynamic nematic lane formation. Simulations and experiments show that, following fluid bilayer substrate mediated spatial motor restructuring, the total motor concentration becomes enriched below the microtubule lanes that they drive, with the feedback leading to more dynamic lanes. Our results have implications for membrane-coupled active nematics in vivo as well as for engineering dynamic and reconfigurable materials where the structural elements and power sources can dynamically colocalize, enabling efficient mechanical work.more » « less
-
Topological structures are effective descriptors of the nonequilibrium dynamics of diverse many-body systems. For example, motile, point-like topological defects capture the salient features of two-dimensional active liquid crystals composed of energy-consuming anisotropic units. We dispersed force-generating microtubule bundles in a passive colloidal liquid crystal to form a three-dimensional active nematic. Light-sheet microscopy revealed the temporal evolution of the millimeter-scale structure of these active nematics with single-bundle resolution. The primary topological excitations are extended, charge-neutral disclination loops that undergo complex dynamics and recombination events. Our work suggests a framework for analyzing the nonequilibrium dynamics of bulk anisotropic systems as diverse as driven complex fluids, active metamaterials, biological tissues, and collections of robots or organisms.more » « less
An official website of the United States government
